Extending Nearest Neighbor Classification with Spheres of Confidence
نویسندگان
چکیده
The standard kNN algorithm suffers from two major drawbacks: sensitivity to the parameter value k, i.e., the number of neighbors, and the use of k as a global constant that is independent of the particular region in which the example to be classified falls. Methods using weighted voting schemes only partly alleviate these problems, since they still involve choosing a fixed k. In this paper, a novel instance-based learner is introduced that does not require k as a parameter, but instead employs a flexible strategy for determining the number of neighbors to consider for the specific example to be classified, hence using a local instead of global k. A number of variants of the algorithm are evaluated on 18 datasets from the UCI repository. The novel algorithm in its basic form is shown to significantly outperform standard kNN with respect to accuracy, and an adapted version of the algorithm is shown to be clearly ahead with respect to the area under ROC curve. Similar to standard kNN, the novel algorithm still allows for various extensions, such as weighted voting and axes scaling.
منابع مشابه
An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملIdentification of selected monogeneans using image processing, artificial neural network and K-nearest neighbor
Abstract Over the last two decades, improvements in developing computational tools made significant contributions to the classification of biological specimens` images to their correspondence species. These days, identification of biological species is much easier for taxonomist and even non-taxonomists due to the development of automated computer techniques and systems. In this study, we d...
متن کاملOptimized Nearest Neighbor Methods Cam Weighted Distance & Statistical Confidence
Nearest neighbor classification methods are a useful and a relatively straightforward to implement classification technique. However, despite such appeal, they still suffer from the curse of dimensionality. Additionally, the nature of the data sets may not be wholly applicable to the model assumed in the nearest neighbor methods. As such there have been many proposed optimizations. Two such opt...
متن کاملComparing pixel-based and object-based algorithms for classifying land use of arid basins (Case study: Mokhtaran Basin, Iran)
In this research, two techniques of pixel-based and object-based image analysis were investigated and compared for providing land use map in arid basin of Mokhtaran, Birjand. Using Landsat satellite imagery in 2015, the classification of land use was performed with three object-based algorithms of supervised fuzzy-maximum likelihood, maximum likelihood, and K-nearest neighbor. Nine combinations...
متن کاملA Statistical Confidence-Based Adaptive Nearest Neighbor Algorithm for Pattern Classification
The k-nearest neighbor rule is one of the simplest and most attractive pattern classification algorithms. It can be interpreted as an empirical Bayes classifier based on the estimated a posteriori probabilities from the k nearest neighbors. The performance of the k-nearest neighbor rule relies on the locally constant a posteriori probability assumption. This assumption, however, becomes problem...
متن کامل